	OOT Notes
	jan 20, 2013

	

	OBJECT ORIENTED ANALYSIS AND DESIGN

	UNIT-3

	

	

If we analyze three models of modeling tripod we can see that class model describes objects in a system and their relationship, state model describes the life cycle of objects and the interaction model describes how the objects interact & how objects interact to produce useful results.

Both the state model and the interaction model are needed to explain behavior fully.

Levels of interaction
1. Use case: Use case describes how a system interacts with outside actors. Each use case represents a piece of functionality that a system provides to its user. Use cases are helpful in capturing informal requirements.

2. Sequence Diagrams: these are used to more details and show the message exchanged among a set of objects over time. Message may be asynchronous signals and procedure calls.

NOTE: sequence diagrams are useful and good for showing the sequences seen by users of a system.

3. Activity diagram: These diagram provide further details and show flow of control and flow of data. Activity diagrams document the steps necessary to implement an operation or a business process referenced in a sequence diagram.

Data flow diagram
A Data Flow diagram is a graph that shows the flow of information. It is used in the functional model to specify the meaning of operations and
constraints and show functional dependencies. The data flow diagram is a technique which is graphical and concise, thus more easily understood. The data flow diagram also provides the ability to abstract to the level of detail required. Thus it is possible to examine a system in overview and at a detailed level, whilst maintaining the links and interfaces between the different levels. A logical DFD represents logical information, not the physical aspects. A data flow diagram is a graphical representation and it contains four elements:
· The data flow
· The process
· The data store
· The source or sink (external entity)
· DATA FLOW: The data flows from its source object trough processes which, transforms the data. A data flow represents intermediate values within a computation. It connects the output of an object or process with the input of another object or process. The data flow does not change the value of the intermediate result. Data flows are internal to the diagram and do not necessary have a meaning in the real world.
· PROCESS: A process may or may not have side effects. The functional model indicates the possible functional paths.
· ACTOR: An actor is an active object that consumes or produces values. It drives the data flow graph. Actors attached to the inputs and outputs of the Data Flow Diagram.
· DATA STORE: Data is stored for later access in data stores. Data stores are passive objects that merely respond to requests to store or access data.

· Data Flow Diagrams are useful to show the high-level functionality of a system but can also be nested to show more detail when needed. They can be nested to arbitrary level.
· CONTROL: A control flow is a Boolean value that is used to determine whether a process is evaluated or not. Control flows are sometimes useful but a Data Flow diagram is relay only concerned with showing possible computation paths
By using DFD the analyst will be able to specify a system at the logical level. This means that he´ll be able to describes what a system will do, rather than how it will be done.

[image: image1.png]- . Roauiroments
/. Analyze e :/ gu""":‘:;“l Functional
Requirements — specification

AL \ \sge?meauon P4

[
P P
/ validate / Bulld
Re nts | \
| Requireme /“_wnme\ Prototype

Context diagram
· The top level diagram is called the context diagram.

· It contains one activity node denoting the overall function of the system.

· It can help to define the boundaries of the system to be built.

[image: image2.png]Moves

Human
Opponent |,

Machine

Moves

Board
Drawings

Data dictionary
· Every arc in the data flow diagram indicates a flow of data.

· A data dictionary allows more precise description of the data to be made e.g. textual information and data types can be specified.

· Sometimes it is desirable to indicate that a data flow needs to be captured and saved.

· Typically all labeled data in DFD should appear in the data dictionary.
Example DFD using repositories

[image: image3.png]Spoiea ai

Incoming N M Messag T Displayed
T e ™ R
Incoming ; Mail { &
Mail Spool Process |

Fiea /
il /

Specifying Operation
In the data flow diagrams processes are eventually implemented as operations on objects. Each bottom level process of data flow diagram is an operation. Higher level process may also be considered operations, but an implementation may be organized differently as represented in data flow diagrams.

Each operation may be specified in various ways as following:

· Mathematical functions or equations.

· Tables for input and output values.

· Equation specifying outputs in terms of input.

· Pre-conditions and post conditions.(constraints)
· Decision tables.
· Pseudo code.
· Natural language.

Specification of an operation contains a signature and a transformation .the signature defines the interface to the operation : arguments(number , order, types) and the value it returns (number,order,types)/the operation is usually listed in object model to show the pattern of inheritance . the signature of all methods implementing an operation must match , the transformation defines the effect of an operation : the output values as functions of the input values and side effects of the operation on its operand objects
[image: image4.png]Specification of an operation

v v

Signature Transformation
Argument Return type Output as input Effect on

values operand object

Operations can be divided into three categories-

1. Queries
2. Actions

3. Activities
· Queries- A query is an operation that has no side effect on the externally visible state or any object; it is a pure function.
· Actions-an action is a transformation that has side effect on the target object or other objects in the system reachable from the target object. An action has no duration in time, it is logically instantaneous.
· Activity-an activity is an operation to or by an object that has duration in time, as opposed to queries and actions, which are considered as instantaneous. An activity inherently has side effects because of its extension
in time.

Functional constraint

· A constraint shows the relationship between two objects at the same time (such as frequency and wavelength) or between different values of the same object at different times.
· A constraint may be expressed as a total function (one value is completely specified by another) or a partial function (one value is restricted, but not completely specified by another).
· For example, a co-ordinate transformation might specify that the
scale factor for the x – coordinate and the y- coordinate will be
equal; this constraint totally defines one value in terms of the
other.
· The second law of thermodynamics expresses a partial
constraint; it states that the entropy of the universe can never
decrease.

· Constraint can appear in each of the kinds of the model. Object constraint specifies that some objects depend entirely or partially on objects. The dynamic constraints specify relationship among the states or events of different objects. Functional constraint specifies restrictions on operations such as scaling transformation described above.
· A constraint between values of an object over time is often called invariant. Conservation law in physics is invariants; the total energy, or change, or angular
momentum of a system remains constant. Invariants are useful in specifying the behavior of operations.

Nested data flow diagrams

A data flow diagram is particularly useful for showing the high level functionality of a system and its breakdown into smaller functional units. A process can be expanded into another data flow diagram.

· Each input and output of the process is input and output of the new diagram.
· The new diagram may have data stores that are not shown in the
higher level diagram. The display icon process of the fig corresponds
to the data flow diagram of the figure. Nesting of a data flow diagram
permits each level to coherent and understandable yet the overall
functionality can be arbitrary depth.
· The entire set of nested diagrams forms a tree. Yet the overall functionality can be arbitrarily complex. A diagram that references itself represents a recursive computation. (The nesting of diagrams is also called leveling since the diagrams are organized into different levels.)
· Eventually the nesting of diagrams terminates with simple functions
· These functions must be specified as operations.

OMT – Object Modeling Technique

The dynamic model describes the aspects of the system that change over time. The dynamic model is used to specify and implement the control aspects of a system. The dynamic model contains state diagrams. A state diagram is a graph whose nodes are states, and whose arcs are transitions between states caused by events.

The functional model describes the data value transformations within a system. The functional model contains data flow diagram. A data flow diagram represents a computation. A data flow diagram is a graph whose nodes are processes and whose arcs are data flows.

The object model is the most fundamental, because it is necessary to describe what is changing or transforming before describing when or how it changes.

· OMT is an object-oriented design method. In OMT, one constructs several kinds of diagrams.
· The focus is on the construction of class association diagrams (in short Class Diagrams), that show the static structure of the object classes and their relations.
For each phase one constructs an appropriate class diagram.

· The dynamical behavior of a system is first described by means of event trace diagrams (message sequence charts).
· The next step is to define a state transition diagram (in short State Diagram) for each class that has a non-trivial dynamic behavior.
· The functional model consists of Data Flow Diagrams. A data flow diagram shows the flow of values from external inputs, via operators and internal data structures to external outputs.
· Because the functional model is difficult to relate to the other models, it is not used very much in practice.

The OMT methodology spans the life cycle phases from analysis, via design to code:

· Analysis delivers a logical model of the system. (In the ESA life cycle, analysis is called Software Requirements Definition).
· System Design delivers an architectural design. (In the ESA life cycle, system design is called Architectural Design).
· Object Design delivers a detailed physical model. (In the ESA life cycle, object design is called Detailed Design).
· Finally, the classes are transformed into code.

The object oriented analysis models before now provide expressive account of sophisticated class organization. The design process may employ more prolific bottom –up methods. Object oriented design is also fluent. Class base design frame works are almost too flexible. Different idiomatic approaches to the same problem often lead to different design solutions .the innermost concept of a class at the design level is amazing stretchy and influential. Classes form a natural central point for organizing miscellaneous expressive, emblematic and computational properties. The traditions in which these properties are supposed, often govern the basic plan of assault for functional design.

The different perspective normally corresponds to object oriented analysis models that stress particular features of objects. Often multiple perspectives may be applied to the same object oriented analysis model. Design can look very different depending on which sets of techniques are applied. The most central criteria revolve around compositionality. Compositional design is simplest when the construction of one class depends only on the abstract class specification of its components, not their internal structure..

In compositional design framework, just about every class should be designed to be amenable for use as a component by others.

Design issues
· Decomposability: Facility of decomposing large problem in sub problems by designers.
· Compos ability: facility of recombining and reusing system components.
· Continuity: ability of making changes and allowing manifesting changes themselves.
· Protection: To reduce size propagation an accidental use.
· Coupling: degree of interdependence.
· Cohesion: Functional strength of each sub module.

Methodologies:

· Object and classes.
· Responsibilities: data and function.
· Collaboration: what other classes help us carry out other responsibilities.
· Inheritance: similarity among classes.
· Subsystems: collections of objects and classes that perform the task.
· Services: an exported interface that addresses some group of tasks.

Sample DFD

Some different ways to compute volume and area for a cylinder are

· A formula for volume= Πr*r*h.

· Surface area = 2 Πrh(r= radius, h= height)

· A look up table: volume and surface area are listed for standard values of radius and height.

Numerical methods: Calculate volume and surface area from differential equations

The OMT Methodology: System Design

The ESA terminology for system design is Architectural Design.

The object-oriented viewpoint introduces no new insights into system design, but system design is included in OMT for compete coverage of the development process.

The steps taken during system design are:

· Organize the system into subsystems (top-level components).
· Identify concurrency inherent in the problem.
· Allocate subsystems to processors and tasks (processes/threads).
· Choose the basic strategy for implementing data stores in terms of data structures, files and databases.
· Identify global resources and determine mechanisms for controlling access to them.
· Choose an approach to implement software control

· use the location within the software to hold the state, or
· directly implement a state machine, or
· Use concurrent tasks.
· Consider boundary conditions (initialization, termination, failure).
· Establish trade-off priorities (speed, memory, portability, ...).

The OMT Methodology: Object Design

The ESA terminology for object design is Detailed Design.

Object design transforms the logical analysis model into a physical model for
implementation.
The steps taken during object design are:

1. Obtain operators for the class diagrams from the other models:

· An operator for each process in the functional model.

· An operator for each event in the dynamical model (depending on the implementation of control).
2. Design algorithms to implement operators:

· Choose algorithms that minimize the cost of implementing operators.
· Select data structures appropriate to the algorithms.
· Define new internal classes and operators as necessary.
· Assign responsibility for operators that are not clearly associated with a single class.

3. Optimize access paths to data:

· Add redundant associations to minimize access cost and maximize convenience.
· Rearrange the computations for greater efficiency.
· Save derived values to avoid recomputation of complicated expressions.

4. Implement software control by refining the approach chosen during system design.

5. Adjust class structure to increase inheritance:

· Rearrange and adjust classes and operators to increase inheritance.
· Abstract common behavior out of groups of classes.
· Use delegation to share behavior where inheritance is semantically invalid.
6. Design implementation of associations:

· Analyze the traversal of associations.
· Implement each association as a distinct object or by adding object-valued attributes to one or both classes in the association.

7. Determine the exact representation of attributes.

8. Package classes and associations into modules.

Managing implementation
· In the implementation phase, the team builds the components either from scratch or by composition. Given the architecture document from the design phase and the requirement document from the analysis phase, the team should build exactly what has been requested, though there is still room for innovation and flexibility. For example, a component may be narrowly designed for this particular system, or the component may be made more general to satisfy a reusability guideline. The architecture document should give guidance. Sometimes, this guidance is found in the requirement document.

· The implementation phase deals with issues of quality, performance, baselines, libraries, and debugging. The end deliverable is the product itself.

· There are already many established techniques associated with implementation.

· Implementation is the realization of an application, or execution of a plan, idea, model, design, specification, standard, algorithm, or policy.

· In computer science, an implementation is a realization of a technical specification or algorithm as a program, software component, or other computer system. Many

· Implementations may exist for a given specification or standard. For example, web browsers contain implementations of World Wide Web Consortium-recommended specifications, and software development tools contain implementations of programming languages.

· In the IT Industry, implementation refers to post-sales process of guiding a client from purchase to use of the software or hardware that was purchased. This includes Requirements Analysis, Scope Analysis, Customizations, Systems Integrations, User Policies, User Training and Delivery.

· In political science, implementation refers to the carrying out of public policy. Legislatures pass laws that are then carried out by public servants working in bureaucratic agencies. This process consists of rule-making, rule-administration and rule-adjudication. Factors impacting implementation include the legislative intent, the administrative capacity of the implementing bureaucracy, interest group activity and opposition, and presidential or executive support.

RELATIONSHIP b/w Functional, state , and object model

· The functional model shows what has to be done by the system .the leaf processes are the operations on the objects .each process is implemented by a method on some object .the dynamic model shows the sequence in which the operations are performed .each sequence is implemented as a sequence, loop, or alteration within some method.

· The process in the functional model corresponds to the operations in the object model. Often there is the direct correspondence at each level of nesting .A top level process corresponds to operations on more basic object that are part of the complex object or that implement it. Sometimes one process corresponds to several operations and vice-versa.

· Processes in the functional model show objects that are related by function .a process is usually implemented as method. if the class of object is an input and an output then the object is usually the target , and the other inputs are arguments if the output of the process is a data store .the data store is the target. Frequently a process with an input from or to a data store corresponds to two methods .one of them being an implicit selection or output of the data. If an input or output is an actor, then it is the target .if an input is an object and an output is a part of the object or neighbor of the object in the object model, then the object is the target.

· Data stores are also objects in he object model. Data flows to or from the actors represents operations on or by the objects. The data flow values are the arguments or the results of the operations .because actors are self motivated objects the functional model is nit sufficient to indicate when they act .each flow into a data store is a query operation with no side effects on the data store objects.

· Relative to the functional model, the object model shows the structure of the actors, data stores and flows in the functional model. The dynamic model shows the sequence in which process is performed.
· Relative to the object model, the functional model show the operations on the classes and the arguments of each operation. The dynamic model performs as it receives events and changes state.
· Relative to dynamic model, the functional model shows the definitions of the leaf actions and activities that are undefined with the dynamic model. The object model shows what changes state and undergoes operations

SA/SD(Structure Analysis / Structure Design)

· Structure analysis / structure design (SA/SD) includes a variety of notations for formally specifying software.

· In analysis phase, data flow diagrams, process specification, a data dictionary, state transition diagrams, and entity relationship diagrams are used to logically describe a system.

· In design phase, details are added to the analysis model and the data flow diagrams are converted into structure chart descriptions of programming language code.

Data flow diagram- data flow diagram model the transformation of data as it flows through the system and are the focus of the Structure analysis / structure design. A data flow diagram consists of

i. processes
ii. data flows
iii. actors and
iv. Data stores.

· Structure analysis/ structure design recursively divide complex processes into sub diagrams until many small processes are left that are easy to implement. When the resulting processes are simple enough, the decomposition stops , and a process specification is written for each lowest level process .process specification may be expressed with decision tables ,pseudo code or other techniques.

Data dictionary: the data dictionary contains missing from data flow diagram. The data dictionary defines data flows and data stores and the meaning of various names.

Entity –relationship (ER) Diagrams: it highlights relationship between data stores that otherwise would only be seen in the process specification. Each ER data element corresponds to one data flow diagram.

Data store, the object modeling notation is an enhancement over ER diagram.

The above tools are used during the process of structure analysis. Structured design follows structured analysis and address low level details. Data flow diagram processes are converted into programming language functions and a structure chart is created showing the procedure call tree.

Jackson Structured Development (JSD)
· Jackson structured development (JSD) is another mature methodology which has a different style than SA/SD or OMT. The JSD methodology was developed by Michel Jackson and is especially popular in Europe.JSD does not distinguish between analysis and design and instead lumps analysis and design as specification.
· JSD divides system development into two stages

1. Specification
2. Implementation.

· JSD first determines the “what” and then the “how”.
· JSD is intended especially for application in which timing is important.
· A JSD model begins with consideration of the real world, the purpose of the system is to provide functionality, but Jackson feels that one must first consider how this functionality fits in with real world.
· JSD model describes the real world in terms of entities, actions or ordering of actions. Entities usually appear as noun in requirement statements and actions appear as verbs
· JSD software development consists of six sequential steps:

1. Entity Structure Step
2. Entity Action Step
3. Initial Model Step
4. Function Step
5. System Timing Step
6. Implementation

1) Entity Structure Step: Jackson presents several examples one of which is the design of elevator control system. The elevator control system controls two elevators which services six floors. Each floor has six inside buttons (one for each floor). Each floor has up and down buttons in the waiting area .Jackson identifies two entities for elevator control example: Button and elevator.
2) Entity Action Step: Action occurs in the real world and is not an artifact of the system. Action takes place at a point in time are atomic and not decomposable. The entity structure step partially orders the actions of each entity by time. The elevator control system illustrate the importance of ordering actions .it is permissible for an elevator to arrive at floor 3 leaving floor 3 , arrive at floor 2, leave floor 2 and so on. It does not make sense for two arrived actions to occur in succession; arrive and leave operations must be alternate.
3) Initial Model Step: The initial model step states how the real world connects to the abstract model. JSD supports state-vector and data stream connection. The elevator user does not want the control system to remember each button pressed and send an elevator fine to service request .the JSD model of the computer system is unaware of the number of presses and only communicates with the real world in the “up-flag”.
4) Function step: It uses pseudo code to state output of actions. At the end of this step the developer has a complete specification of the required system in the elevator example, turning the display panel lights on or off as an elevator arrives at each floor is a function that must be specified.
5) System timing step: this step considers how much the model is permitted to lag the real world. For the most part, the result of the timing step is a set of informal notes on performance constraints. For example an elevator control system must detect when up and down buttons are pressed.
6) Implementation step: this focuses on the problems of process scheduling and allocates processors to processes. The number of processes may be different from the number of processors. Jackson’s elevator control model has 50 processes. The developer must decide whether to match each process to one or 50 CPU or how to get several processes to share the same CPU. After the six JSD steps comes writing of code and database design.

CASE STUDY (To be studied by Student themselves):

· Structured analysis and structured design (SA/SD) is a structured process in which a problem is partitioned into manageable units. The logical and physical design details are differentiated to reduce the amount of time required for maintenance it is usually a good idea to separate the logical and physical or implemented, design of a system because logical details are less susceptible to change than implementation details. This separation is especially important in the software industry, where the technology changes so rapidly.

· There are two main approaches to SA/SD.
· the top-down approach .the four step process focused on a top down approach and included a context diagram, functional decomposition , and functional primitives .the four steps consists of the development of the following items in order : current physical model ,new logical model and finally new physical model. The new logical model could be very similar to the current logical model in some projects, such as when a system is being automated, the advantages of this approach are that the complexity is reduced and an overview of the system is developed even when there are a large no of tasks. Some of the disadvantages include the difficulty to find a suitable abstraction level, the user may be unclear on how to begin, and it is sometimes difficult to split a node completely into sub nodes.
· The bottom–up approach consists of the following models: essential, environment, behavioral and implementation. the essential model leads into the environmental and behavioral models, and then both of three models lead into the implementation. The essential model presumes an ideal situation where there are no costs issues .it is in effect a model of that system must do.

· The environmental model is representation of the scope and interaction between the system and the world. It describes where the boundary between the system and the world exists .the environmental model includes a statement of purpose is a short statement about what the system should do and can be , viewed as a statement what will be read by top management and so should not be too technical or detailed .the context diagram is special form of a DFD and is used to find out system boundaries .external actors ,or terminators are connected to the single node system by events . The event list is a narrative list of the events that originate from the outside world and which interact with his system .events can be unexpected, or flow driven, which includes fundamental events such as placing an order. Expected events can be triggered by other events, temporarily or by a control event when something does not happen for example, if a customer does not pay an invoice within a specified period of time. Non –events are usually temporal or control events, the event list is created from the context diagram, or system related documents.
· Use cases are used to identify system boundaries, just like context diagrams. Use cases include the message a system will respond to, or the message generated by the system, the behavior of the system and the actions triggered by actors which are outside of the system.
· The behavior model includes a data dictionary, DFD, s, entity relationship and state transition diagrams .the data dictionary is also known as a repository or an encyclopedia because all the data is listed alphabetically. It describes all of the data roguishly or precisely .the meaning and decomposition of all data flows and stores are also represented .the data dictionary is helpful in detecting synonyms, homonyms, and for the identification of discrepancies. the content of the data dictionary is a name , an alias ,the use is the process ,or processes ,that use the item and how, the content description is a notation for representing the content.
· The DFD is functional oriented view of a network of processes used for modeling workflows. DFD’s are used to reduce the complexity of the data dictionary; leveled DFD’s are used to help avoid overly complex DFD by portioning processes into sub processes. Avoiding the following items can check the consistency of DFD, spontaneous generators (i.e. no input data flow to process), unlabeled flows and processes and read-only or write only data stores.
· The state transition diagram begins with an arrow (originating) from nothing and going to the first state
· The final state has no arrows leaving it .the consistency of the state transition diagram can be checked by verifying the following: have all states been defined, can all states be reached, and does each state respond appropriately to all possible conditions.
· The design phase begins with the user implementation model .this model includes concrete system boundaries, the interfaces, (i.e. input/output formats, devices, and timings) and constraints, including data volume, hardware, political, security and reliability.
· Some of the advantages of SA/SD are that the model is a structured approach, there are a several techniques that can be used, and it requires a substantial amount of analysis of requirement .some disadvantage include the following items. Because it requires extensive analysis, it is quite a heavy weight process. Furthermore, a requirements process, it does not emphasizes customer relationships, quality aspects or iterations.

COMPARISON OF METHODOLOGIES
Comparison of JSD with OMT:

· JSD as being object oriented, no JSD does begin with consideration of the real world and in this sense is the object oriented .rather an object oriented model
should have a rich mixture of data structure and relationship.
· Due to its real time approach and heavy reliance on pseudo code JSD is complex compared to data flow and object oriented approaches on the other hand graphical models are easy to understand .JSD approach is found unnecessary complex for simpler problems.
· JSD approach is complex and difficult to fully comprehend. We think that JSD is more obscure than data flow and object oriented approaches. It is basically designed to handle difficult real time problems. For these problems, JSD may produce a superior design and be worth the effort .however, JSD’s complexity is unnecessary and a bit overwhelming for the more common simpler problems.
· Jackson places more emphasis on actions and less on attributes than we
do. So JSD actions look similar to OMT associations. For example, a clerk
allocates product to an order, we call allocates an association; Jackson call
it an action. Jackson finds attributes confusing and prefers to avoid them,
in much the same way that attributes diminish the importance of
operations in OMT object models.
· JSD is a useful methodology for the following types of applications:

· Concurrent software where processes must synchronized with each other.
· Real time software .JSD modeling is extremely detailed and focuses on time.
· Microcode: JSD is thorough, make no assumptions about the availability of the operating system, and considers processing and timing.
· Programming parallel computers. The JSD paradigm of many processes may be helpful here.

JSD is ill suited for some other applications

· High level analysis.JSD does not foster broad understanding of a problem. JSD is ineffective at abstraction and simplification. JSD meticulously handles details but does not help a developer grasp the essence of the problem.
· Databases, database design are more complex topic than Jackson implies.JSD modeling is biased towards actions and away from entities and attributes .as a natural consequence, it is a poor t
· echnique for data base design.
· Conventional software running under an operating system. JSD’s abstraction of hundreds or thousands of processes is confusing and unnecessary.
SA/SD & OMT:

· SA/SD and OMT modeling have much in common.

· Both methodology use similar modeling construct and support the three orthogonal views of a system
· The difference between SA/SD and OMT is primarily a matter of style and emphasis.

· In the SA/SD approach, the functional model dominates, the dynamic model is next important, and the object model least important. In contrast, OMT modeling regards the object model as most important, then dynamic model, and finally the functional model.

· SA/SD organizes a system around procedures. In contrast, an object model design technique (such as OMT) organizes a system around real –world objects, or conceptual objects that exist in the user’s view of the world. Most changes in requirements are changes in function rather than in object, so change can be terrible in procedure based design.

· SA/SD is useful for problems where function is important and complex than data. SA/SD assumes that this often occurs.
· An SA/SD design has a clearly defined system boundary, across which the software procedures must communicates with the real world. The structure of the SA/SD design is derived in part from the system boundary, so it can be difficult to extend a SA/SD design to a new boundary. It is much easier to extend an object oriented design; one merely adds objects and relationship near the boundary to represent objects that that existed previously only in the outside world. An object oriented design is more resilient to change and more extensible.

· In SA/SD decomposition of a process into sub processes is somewhat arbitrary different people will produce different decomposition in object oriented design the decomposition is based on objects in the problem domain. So developers of different programs in the same domain tend to discover similar objects .this increases the reusability of components from one object to next.

· An object-oriented approach better integrates data bases with programming code. One uniform paradigm, the object, can model both database and programming structure. Research on object-oriented databases may further improve this situation. In contrast in procedural design approach is inherently awkward at dealing with databases. It is difficult to merge programming code organized about data.

· There are many reasons why data flow approaches are in such wide uses/SD was one of the first well thought out ,formal approaches to software and system development ,we believe the benefits of an object – oriented approach and the maturation of object oriented technology will gradually promote its wide use for analysis ,design and implementation.

CYLINDER

COMPUTE VOLUME

COMPUTE SURFACE AREA

RADIUS

HEIGHT

VOLUME

SURFACE AREA

	UNIT-3
	21

